SYNTHESES FROM PYRIDINE ALDEHYDES—III

A. W. SOMERVILLE and S. G. DAVIES

University of Salford

(Received in the UK 30 September 1968; accepted for publication 14 October 1968)

Abstract—The synthesis of 5[H]-pyrindines has been carried out starting with an azlactone derived from 6-methylpyridine-2-aldehyde. The significance of this in relation to previous unsuccessful attempts to make similar compounds starting from pyridine-2-aldehyde is discussed.

IT HAS been reported recently¹ that unsaturated azlactones obtained from pyridine 4- and 3-aldehydes and hippuric or aceturic acid react with Grignard reagents to yield 6[H]- or 7[H]-pyrindines. In some instances this proceeds by way of intermediate carbinols or oxazolines but, on occasions, it occurs directly.

An attempt to synthesize 5[H]-pyrindines by a similar route² proved unsuccessful since although the unsaturated azlactone derived from pyridine-2-aldehyde reacted with Grignard reagents to give (usually) a carbinol the latter did not undergo the further cyclization stage.

The apparent anomaly between an intramolecular carbonium ion attack taking place at position 3 of the pyridine ring when the side chain was attached at position 4 but not when attached at position 2 was not explained.

However, the possibility that this is due to a relatively greater contribution from the inductive effect of the N atom rather than from mesomeric interactions could be investigated by studying the analogous reactions of the unsaturated azlactone of 6-methylpyridine-2-aldehyde in which the nitrogen inductive effect would be partly offset by the electron-donating effect of the Me substituent. Moreover, this approach is also suggested by the recent independent observation³ which proposes that a 5[H]-pyridine, viz. 2,5-dimethyl-6-phenyl-5(4H)]-pyridine may have been obtained by condensation of 6-methylpyridine-2-aldehyde with phenylacetone and reduction of the 3-phenyl-4-[6-methyl-2-pyridyl-]3-but-2-one with Zn/HBr.

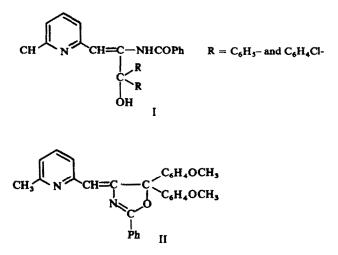
In order to investigate this problem the preparation of the azlactone derived from 6-methylpyridine-2-aldehyde and hippuric acid has been attempted by several methods previously described^{1,2} always resulting in tarry products from which the pure azlactone was separated by column chromatography in low yield. This compound was reacted with phenylmagnesium, bromide, *p*-chlorophenylmagnesium bromide and the results are summarized in Table 1.

In examples (i) and (ii) tertiary carbinols of structure I were obtained, identified spectroscopically and by comparison with similar compounds previously prepared; while in example (iii) the oxazoline II was formed and similarly identified.

Treatment of the carbinols from (i) and (ii) by heating with a mixture of glacial acetic-HCl at 40° resulted in the formation of oxazolines corresponding to the product of reaction (iii).

	Grignard	Product	M.p.			Found		Analyses %	84	Requires	s
(8)	substituent	obtained	ĉ		U	н	z	formula	U	н	z
9	C ₄ H _c -	Carbinol	165	16.8	79-41	5.64 6.26	6.26	C, ₈ H,4N,0,	80-00	5.72	6-67
) (j)	C,H,Cl(p)-	Carbinol	157	17-9	68-52	4-69	5-28	C ₂₈ H ₂₂ N ₂ O ₂ Cl ₂	68·71	4-51	5.73
) (jj	C ₆ H ₄ OCH ₃ (p)-	Oxazoline	172	22.9	77·26	5-42	96-9	C ₃₀ H ₂₆ N ₂ O ₃	77-93	5.63	606
	Grignard	Starting	M.p.	FI-3A		Found		Analyses	~	Requires	\$2
6)	substituent	material	°		U	н	z	formula	U	н	z
(iv)	C ₆ H ₅ -	Carbinol (i)	189	82·1	83-76	5.47	66-9	C ₂₆ H ₂₂ N ₂ U	83-58	5.63	6-97
2	$C_{k}H_{s}Cl(p)$	Carbinol (ii)	199	79-3	71-69	4.21	5-07	C28H20N20Cl2	71·34	4-25	5.95
(z)	C ₆ H ₅ OCH ₃ (p)-	Oxazoline (iii)	190	69-4	<i>TT-TT</i>	5-21	5-82	C ₃₀ H ₂₆ N ₂ O ₃	77-93	5.63	6-06

h SURSPOLIFINT BEACTION OF 2-PHENVI-2-6-METHVI PICOLVI INDENE-5(4H)-DXAZOLONE WITH GRIGNARD REAGENTS AND TARF |


(i) Compounds (i) and (ii) and (iv) to (vi) were obtained as white crystals; compound (iii) as yellow crystals.

(ii) Compounds (i) and (v) were recrystallized from ethanol, compounds (ii) and (iv) from benzene-pet. ether (40-60°) and compounds (iii) and (vi) from pet. ether (60-80°).

IR spectral data was obtained for all compounds using the Unicam SP200 (KBr wafer discs). Compounds (ii) and (ii) showed characteristic frequencies of -OH(3450 cm⁻¹), --NH(3250 cm⁻¹); amide I (1690 cm⁻¹) and amide II (1620 cm⁻¹); Compound (ii)

(iii) showed the characteristic frequency of $\sum C=N$ (1650 cm⁻¹); compounds (iv) to (vi) showed the bands characteristic of --NH(3250 cm⁻¹), amide I (1690 cm⁻¹) and amide II (1620 cm⁻¹).

A. W. SOMERVILLE and S. G. DAVIES

Further treatment of all three oxazolines in the presence of the same reactants but at an elevated temperature (75°) resulted in a high yield rearrangement to 5-[H]-pyrindines, again identified spectroscopically and by comparison with the 6[H]- and 7[H]-pyrindines previously reported.

Similar rearrangement did not in any case reported² result in interconversion of the corresponding compounds of the pyridine-2-aldehyde series to 5[H]-pyrindines and thus these results support the suggestion that in these cyclization reactions the inductive interactions are relatively more important than the mesomeric interactions.

EXPERIMENTAL

Preparation of 2-phenyl-2-[6-methylpicolylidene]5(4H) oxazolone-(I). A mixture of hippuric acid (4-5 g) and KHCO₃ (1 g) was dissolved in Ac₂O (50 ml) with heating and stirring and then cooled to 0°, 6-methylpyridine-2-aldehyde (3-5 g) was added and the mixture stirred (2 hr). The tarry product was poured into hot water (500 ml) separated by extraction with ether (50 ml \times 2) and separated using column chromatography on silica dissolving the crude product in the minimum amount of CHCl₃ and eluting with CHCl₃-EtOH (9:1).

The product was characterized by its IR spectrum (showing characteristic frequencies of azlactone carbonyl (1785 cm⁻¹), $\Sigma = N$ (1650 cm⁻¹), and UV spectrum (high intensity band at λ 362 mµ; less

intense band at λ 259 mµ).

General procedure for the reaction of 2-phenyl-2-[6-methylpicolylidene]-5(4H) ∞ azolone with Grignard reagents (II). To an ethereal soln of Grignard reagent prepared from Mg (0.5 g) and aryl halide (0.025 mole) in ether (30 ml) was added a fine suspension of oxazolone (1.5 g) in ether (30 ml) over one hr. The reaction mixture was refluxed for two hr, left overnight and hydrolysed with sat. NH₄Claq. The ether layer was separated, dried over Na₂SO₄ and most of the ether removed. The oily residues obtained were triturated with pet. ether (b.p. 40-60°) and allowed to cool. The products were filtered and recrystallized as indicated in Table 1.

Cyclization of carbinols derived from 2-phenyl-2[-6-methylpicolylidene]-5(4H) oxazolone with Grignard reagents (III). To a fine suspension of carbinol or oxazoline (0.25 g) in AcOH (10 ml) HCl (5 ml, S.G. 1.18) was added slowly. The solid dissolved and the mixture was kept at 75° for 15 min. A white ppt (the pyridine) separated after addition of a sat. soln of NaOAc. This was filtered, washed with water and recrystallized as indicated in Table 1.

REFERENCES

- ¹ G. Slater and A. W. Somerville, Tetrahedron 22, 35-42 (1966).
- ² G. Slater and A. W. Somerville, *Ibid.* 23, 2823–2828 (1967).
 ³ B. Reichert and A. Lechrer, *Arzreimittel-Forsch*, 15 (1), 36 (1965).